1/31/2021 C Programming-Array Processing

Hands On C
500 Working Programs

Array Processing

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 1/18



1/31/2021 C Programming-Array Processing

studentID]0]
studentD]1]
studentiD]2]
studentID]3]
studentD]4]
studentiD]5]
studentID]6]
studentlD]7]
studentiD]8]
studentID]9]

Understanding Arrays

In [1]: #include <stdio.h>

int main(void)

{
int studentID[10];
double studentGPAs[10];

printf("sizeof studentID array: %1d bytes\n", sizeof(studentID));
printf("sizeof studentGPA array: %1d bytes", sizeof(studentGPAs));

}

sizeof studentID array: 40 bytes
sizeof studentGPA array: 80 bytes

localhost:8888/notebooks/C Programming-Array Processing.ipynb#

101

201

301

401

501

601

/01

801

901

1001

2/18



1/31/2021 C Programming-Array Processing

Assigning Values to an Array

In [2]: #include <stdio.h>

int main(void)

{
int scores[5];
scores[@] = 100; // first score is at index ©
scores[1l] = 97;
scores[2] = 88;
scores[3] = 92;
scores[4] = 85;
}

In [3]: #include <stdio.h>

int main(void)

{

int scores[5];

scores[@] = 100; // first score 1s at index @

scores[1] = 97;

scores[2] = 88;

scores[3] = 92;

scores[4] = 85;

printf("%d %d %d %d %d\n", scores[@], scores[1l], scores[2], scores[3], scores|
}

100 97 88 92 85

In [4]: #include <stdio.h>

int main(void)

{
int scores[5];
scores[@] = 100; // first score is at index ©
scores[1] = 97;
scores[2] = 88;
scores[3] = 92;
scores[4] = 85;
for (int 1 = 0; i < 5; i++)
printf("%d ", scores[i]);
}

100 97 88 92 85

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 3/18



1/31/2021 C Programming-Array Processing
In [5]: #include <stdio.h>
#define ARRAY_SIZE 5

int main(void)

{
int scores[ARRAY_SIZE];
scores[@] = 100; // first score is at index ©
scores[1l] = 97;
scores[2] = 88;
scores[3] = 92;
scores[4] = 85;
for (int i = ©; i < ARRAY_SIZE; i++)
printf("%d ", scores[i]);
}

100 97 88 92 85

In C, Characters Strings Are Arrays

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 4/18



1/31/2021 C Programming-Array Processing
In [6]: #include <stdio.h>
#define ARRAY_SIZE 4

int main(void)

{
char name[ARRAY_SIZE];
name[0] = 'K';
name[1] = 'r’;
name[2] = 'i’;
name[3] = 's';
for (int i = ©; i < ARRAY_SIZE; i++)
printf("%c", name[i]);
}
Kris

In [7]: #include <stdio.h>
#define ARRAY_SIZE 5

int main(void)

{
char name[ARRAY_SIZE];

name[Q]
name[1]
name[2]
name[3]
name[4]

I
I S
-

]
~
(&)
-

// null character marks the end of a string

printf("%s", name);

Kris

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 5/18



1/31/2021 C Programming-Array Processing
In [8]: #include <stdio.h>
#define ARRAY_SIZE 5

int main(void)

{
char name[ARRAY_SIZE];
int count = 9;
name[0] = 'K';
name[1] = 'r’;
name[2] = 'i';
name[3] = 's';
name[4] = '\@'; // null character marks the end of a string
for (int i = ©; name[i] != '\@'; ++i)
count += 1;
printf("The string %s contains %d characters™, name, count);
}

The string Kris contains 4 characters

Initializing an Array

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 6/18



1/31/2021 C Programming-Array Processing
In [9]: #include <stdio.h>
#define ARRAY_SIZE 5
int main(void)

{
int scores[ARRAY_SIZE];

scores[@] = 100; // first score is at index ©
scores[1l] = 97;
scores[2] = 88;
scores[3] = 92;
scores[4] = 85;

for (int i = ©; i < ARRAY_SIZE; i++)
printf("%d ", scores[i]);

100 97 88 92 85

In [10]: #include <stdio.h>
#define ARRAY_SIZE 5

int main(void)

{
int scores[ARRAY_SIZE] = { 100, 97, 88, 92, 85 };
for (int i = ©; i < ARRAY_SIZE; i++)
printf("%d ", scores[i]);
}

100 97 88 92 85

In [11]: #include <stdio.h>
#define ARRAY_SIZE 5

int main(void)

{
char name[ARRAY_SIZE] = "Kris";
printf("%s", name);

}

Kris

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 718



1/31/2021 C Programming-Array Processing
In [12]: #include <stdio.h>

int main(void)

{
int scores[] = { 100, 97, 88, 92, 85, -1 };
for (int i = ©; scores[i] != -1; i++)
printf("%d ", scores[i]);
}

100 97 88 92 85

Understanding Buffer Overflow

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 8/18



1/31/2021 C Programming-Array Processing
In [13]: #include <stdio.h>
#define ARRAY_SIZE 5
int main(void)
{

int scores[ARRAY_SIZE] = { 100, 97, 88, 92, 85 };

for (int i = ©; i < ARRAY_SIZE; i++)
printf("%d ", scores[i]);

scores[6] = 100; // Overflow

100 97 88 92 85

*** stack smashing detected ***: <unknown> terminated
[C kernel] Executable exited with code -6

How "A" is Different from 'A’

=
=

\O

."ﬂ! IHAH

localhost:8888/notebooks/C Programming-Array Processing.ipynb#

9/18



1/31/2021 C Programming-Array Processing
In [14]: #include <stdio.h>

int main(void)
{
char letter

= 'A’
char string[] =

5
AT

printf("%c\n", letter);

printf("%s\n", string);

printf("sizeof letter = %1d\n", sizeof(letter));
printf("sizeof string = %1d", sizeof(string));

}
A
A
sizeof letter =1
sizeof string = 2

Understanding Multidimensional Arrays

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 10/18



1/31/2021 C Programming-Array Processing

studentIDIO] 101 10l | [0l _| [0112]
studentID[1] 201
studentID]?] 301
studentID[3] 401
studentID[4] 501
studentID]5] 601
studentIDI6] 701
studentID]7] 801
studentID[8] 901
studentIDI] 1001 901 | @11l | [9112]

In [15]:  #include <stdio.h>

#define NUMBER_OF_STUDENTS 10
#tdefine NUMBER_OF_TESTS 3

int main(void)

{
int studentID[NUMBER_OF STUDENTS];

int grades[NUMBER_OF_STUDENTS][NUMBER_OF_TESTS];

printf("sizeof studentID is %1d\n", sizeof(studentID));
printf("sizeof grades is %1d", sizeof(grades));

sizeof studentID is 40
sizeof grades is 120

localhost:8888/notebooks/C Programming-Array Processing.ipynb#

11/18



1/31/2021 C Programming-Array Processing

Initializing a Multidimensional Array

In [16]: #include <stdio.h>

#tdefine NUMBER_OF_STUDENTS 5
#tdefine NUMBER_OF_TESTS 3

int main(void)

{
int studentID[NUMBER_OF_STUDENTS] = {100, 101, 102, 103, 104 };
int grades[NUMBER_OF_ STUDENTS][NUMBER_OF TESTS] = {{ 90, 80, 95 },
{ 92, 84, 77 },
{ 88, 73, 58 },
{ 82, 88, @},
{ 44, 55, 87 }};
}
In [17]: #include <stdio.h>
#define NUMBER_OF_STUDENTS 5
#define NUMBER_OF_TESTS 3
int main(void)
{
int studentID[NUMBER_OF STUDENTS] = {100, 101, 102, 103, 104 };
int grades[NUMBER_OF_STUDENTS][NUMBER_OF TESTS] = {{ 90, 80, 95 },
{ 92, 84, 77 },
{ 88, 73, 58 },
{ 82, 88, 0},
{ 44, 55, 87 }};
printf("Student\tTest Score\n");
for (int student = 0; student < NUMBER_OF_STUDENTS; ++student)
{
printf("%d\t", studentID[student]);
for (int test = 0; test < NUMBER_OF_TESTS; ++test)
printf("%d ", grades[student][test]);
printf("\n");
¥
}
Student Test Score
100 90 80 95
101 92 84 77
102 88 73 58
103 82 88 ©
104 44 55 87

localhost:8888/notebooks/C Programming-Array Processing.ipynb#

12/18



1/31/2021 C Programming-Array Processing

Too Many Dimensions Become Confusing and
Hard to Read

In [18]: #include <stdio.h>

#define YEARS 3
#define MONTHS 12
#tdefine DAYS 31
t#tdefine ORDERS 5
#tdefine CLIENTS 5

int main(void)
{
int sales[YEARS][CLIENTS][MONTHS][DAYS][ORDERS];
sales[0@][1][10][12][5] = 8; // 8 orders on 16/12 in first year for client 1

printf("sizeof sales is %1d bytes\n", sizeof(sales));

}

sizeof sales is 111600 bytes

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 13/18



1/31/2021 C Programming-Array Processing

Passing an Array to a Function

In [19]: #include <stdio.h>
#define ARRAY_SIZE 5

void show_array(int array[], int size)

{
for (int i = 0; i < size; ++i)
printf("%d ", array[i]);
}
int main(void)
{
int scores[ARRAY SIZE] = { 100, 97, 88, 92, 85 };
show_array(scores, ARRAY_SIZE);
}

100 97 88 92 85

In [20]:  #include <stdio.h>

void show_string(char string[])

{

for (int i = ©; string[i] != "\@'; ++1i)
printf("%c", string[i]);

}

int main(void)

{
char firstname[] = "Kris";
char lastname[] = "Jamsa";
show_string(firstname);
show_string(lastname);

}

KrisJamsa

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 14/18



1/31/2021 C Programming-Array Processing
In [21]: #include <stdio.h>

void show_string(char string[])

{

for (int i = ©; string[i] != "\@'; ++i)
printf("%c", string[i]);

}

int main(void)

{
char firstname[] = "Kris";
char lastname[] = "Jamsa";
show_string(firstname);
show_string(" ");
show_string(lastname);

}

Kris Jamsa

Passing a Multidimensional Array to a
Function

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 15/18



1/31/2021 C Programming-Array Processing
In [22]: #include <stdio.h>

#define NUMBER_OF STUDENTS 5
#define NUMBER_OF TESTS 3

void show_scores(int id[], int grades[][NUMBER_OF_TESTS], int rows, int columns)

{
printf("Student\tTest Score\n");

for (int student = 0; student < rows; ++student)

{
printf("%d\t", id[student]);

for (int test = 0; test < columns; ++test)
printf("%d ", grades[student][test]);

printf("\n");

}
}
int main(void)
{
int studentID[NUMBER_OF_STUDENTS] = {100, 101, 102, 103, 104
int grades[NUMBER_OF STUDENTS][NUMBER_OF TESTS] = {{ 90, 80,
{ 92, 84,
{ 88, 73,
{ 82, 88,
{ 44, 55,
show_scores(studentID, grades, NUMBER_OF_STUDENTS, NUMBER_OF
}
Student Test Score
100 90 80 95
101 92 84 77
102 88 73 58
103 82 88 @
104 44 55 87

localhost:8888/notebooks/C Programming-Array Processing.ipynb#

}s

95 },
77 },
58 },
0},
87 }};

_TESTS);

16/18



1/31/2021 C Programming-Array Processing

What You will Learn Next

To better manage their code, to improve readability, and to increase the code
reuse, programmers often break a larger program into smaller pieces called
functions. Each function should perform a specific task, such as the printf
function that displays output on the screen.

#include <stdio.h>

void sayHello(void)
{

}

printf("Hello, world\n");

int main(void)

{
}

sayHello();

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 17/18



1/31/2021 C Programming-Array Processing

localhost:8888/notebooks/C Programming-Array Processing.ipynb# 18/18



